Efek Latihan Mandiri Berbantuan ChatGPT Terhadap Hasil Belajar Matematika Siswa Sekolah Dasar

  • Aeng Muhidin Universitas Pamulang, Tangerang Selatan, Banten,  Indonesia
  • Heri Kurnia Universitas Pamulang, Tangerang Selatan, Banten,  Indonesia
  • Lina Marlina Universitas Pamulang, Tangerang Selatan, Banten,  Indonesia

Abstrak

Pemanfaatan kecerdasan buatan generatif dalam pendidikan semakin berkembang, namun bukti empiris mengenai efektivitasnya dalam meningkatkan hasil belajar matematika di sekolah dasar masih terbatas. Penelitian ini bertujuan untuk membandingkan efektivitas latihan mandiri berbantuan ChatGPT dengan metode latihan konvensional yang dipandu guru pada pembelajaran matematika sekolah dasar. Dengan menggunakan desain kuasi-eksperimen, penelitian melibatkan dua kelompok siswa yang mengikuti perlakuan berbeda selama empat sesi latihan materi operasi bilangan desimal dan perbandingan. Hasil penelitian menunjukkan bahwa siswa yang berlatih menggunakan ChatGPT mencapai hasil belajar yang secara signifikan lebih tinggi dibandingkan kelompok konvensional, dengan efek yang sangat besar (Cohen’s d = 1.39). Temuan ini selaras dengan teori kemandirian belajar yang menekankan pentingnya perancah adaptif dalam meningkatkan kualitas latihan mandiri. ChatGPT menyediakan penjelasan instan, umpan balik just-in-time, dan contoh penyelesaian yang memperbaiki miskonsepsi secara langsung, kelebihan yang tidak tersedia dalam latihan konvensional. Penelitian ini menegaskan potensi ChatGPT sebagai pendamping belajar matematika di tingkat sekolah dasar, sekaligus membuka peluang riset lebih lanjut terkait desain interaksi yang aman, terstruktur, dan selaras dengan tahap perkembangan siswa.

Kata Kunci: ChatGPT, kemandirian belajar, latihan mandiri, latihan terbimbing, matematika

Data Unduhan PDF

Data unduhan belum tersedia.

Biografi Penulis

Heri Kurnia, Universitas Pamulang, Tangerang Selatan, Banten

Dosen di Program Studi S1 Pendidikan Pancasila dan Kewarganegaraan, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Pamulang. Fokus pada kajian tentang strategi pembelajaran, evaluasi pembelajaran, dan perencanaan pembelajaran.

Diterbitkan
2025-12-31
Bagaimana cara mengutip:
Muhidin, A., Kurnia, H., & Marlina, L. (2025). Efek Latihan Mandiri Berbantuan ChatGPT Terhadap Hasil Belajar Matematika Siswa Sekolah Dasar. Ideguru: Jurnal Karya Ilmiah Guru, 10(3), 2216-2223. https://doi.org/10.51169/ideguru.v10i3.2201
Bagian
Artikel Penelitian
Abstrak viewed: 160 times
PDF downloaded: 51 times

Referensi

Al Shloul, T., Mazhar, T., Abbas, Q., Iqbal, M., Ghadi, Y. Y., Shahzad, T., Mallek, F., & Hamam, H. (2024). Role of activity-based learning and ChatGPT on students’ performance in education. Computers and Education: Artificial Intelligence, 6, 100219. https://doi.org/10.1016/J.CAEAI.2024.100219

Azevedo, R., Bouchet, F., Duffy, M., Harley, J., Taub, M., Trevors, G., Cloude, E., Dever, D., Wiedbusch, M., Wortha, F., & Cerezo, R. (2022). Lessons Learned and Future Directions of MetaTutor: Leveraging Multichannel Data to Scaffold Self-Regulated Learning With an Intelligent Tutoring System. Frontiers in Psychology, 13, 813632. https://doi.org/10.3389/FPSYG.2022.813632/FULL

Barbieri, C., & Booth, J. L. (2016). Support for struggling students in algebra: Contributions of incorrect worked examples. Learning and Individual Differences, 48, 36–44. https://doi.org/10.1016/j.lindif.2016.04.001

Bisra, K., Liu, Q., Nesbit, J. C., Salimi, F., & Winne, P. H. (2018). Inducing Self-Explanation: a Meta-Analysis. Educational Psychology Review, 30(3), 703–725. https://doi.org/10.1007/s10648-018-9434-x

Biyiri, E. W., Dahanayake, S. N. S., Dassanayake, D. M. C., Nayyar, A., Dayangana, K. T. L. U. S., & Jayasinghe, J. A. P. M. (2024). ChatGPT in self-directed learning: Exploring acceptance and utilization among undergraduates of state universities in Sri Lanka. Education and Information Technologies 2024 30:8, 30(8), 10381–10409. https://doi.org/10.1007/S10639-024-13269-8

Booth, J. L., & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, 37(4), 247–253. https://doi.org/10.1016/J.CEDPSYCH.2012.07.001

Chi, M. T. H., De Leeuw, N., Chiu, M. H., & Lavancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18(3), 439–477. https://doi.org/10.1016/0364-0213(94)90016-7

Cohen, B. H. (2013). Explaining Psychological Statistics (4th ed.). Wiley.

Creswell, J. W. (2012). Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research. Pearson.

Dong, L., Tang, X., & Wang, X. (2025). Examining the effect of artificial intelligence in relation to students’ academic achievement: A meta-analysis. Computers and Education: Artificial Intelligence, 8, 100400. https://doi.org/10.1016/J.CAEAI.2025.100400

Field, A. (2009). Discovering Statistics Using SPSS (3rd ed.). Sage.

Firat, M. (2023). What ChatGPT means for universities: Perceptions of scholars and students. Journal of Applied Learning and Teaching, 6(1), 57–63. https://doi.org/10.37074/JALT.2023.6.1.22

García-López, I. M., González González, C. S., Ramírez-Montoya, M. S., & Molina-Espinosa, J. M. (2025). Challenges of implementing ChatGPT on education: Systematic literature review. International Journal of Educational Research Open, 8, 100401. https://doi.org/10.1016/J.IJEDRO.2024.100401

Goss-Sampson, M. A. (2020). Statistical Analysis in JASP: A Guide For Students (4th ed.). Centre for Science and Medicine in Sport & Exercise.

Grewal, L., Stephen, A. T., & Bart, Y. (2025). Online Venting: the Impact of Temporal Proximity Cues and Emotionality on Perceptions of Negative Online Review Value. Journal of Marketing Research, 1(1), 1–24. https://doi.org/10.1177/00222437251356478;REQUESTEDJOURNAL:JOURNAL:MRJA;CSUBTYPE:STRING:AHEAD

Holmes, W., & Tuomi, I. (2022). State of the art and practice in AI in education. European Journal of Education, 57(4), 542–570. https://doi.org/10.1111/EJED.12533;JOURNAL:JOURNAL:14653435;WGROUP:STRING:PUBLICATION

Jensen, L. X., Bearman, M., & Boud, D. (2021). Understanding feedback in online learning – A critical review and metaphor analysis. Computers & Education, 173, 104271. https://doi.org/10.1016/J.COMPEDU.2021.104271

Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., … Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/J.LINDIF.2023.102274

Kohnke, L., Moorhouse, B. L., & Zou, D. (2023). ChatGPT for Language Teaching and Learning. RELC Journal, 54(2), 537–550. https://doi.org/10.1177/00336882231162868;PAGE:STRING:ARTICLE/CHAPTER

Mohamed, A. M., Shaaban, T. S., Bakry, S. H., Guillén-Gámez, F. D., & Strzelecki, A. (2024). Empowering the Faculty of Education Students: Applying AI’s Potential for Motivating and Enhancing Learning. Innovative Higher Education 2024 50:2, 50(2), 587–609. https://doi.org/10.1007/S10755-024-09747-Z

O’Neil, H. F., Chung, G. K. W. K., Kerr, D., Vendlinski, T. P., Buschang, R. E., & Mayer, R. E. (2014). Adding self-explanation prompts to an educational computer game. Computers in Human Behavior, 30, 23–28. https://doi.org/10.1016/J.CHB.2013.07.025

Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: the new frontier for theories of numerical development. Trends in Cognitive Sciences, 17(1), 13–19. https://doi.org/10.1016/J.TICS.2012.11.004

Smit, R., Dober, H., Hess, K., Bachmann, P., & Birri, T. (2023). Supporting primary students’ mathematical reasoning practice: the effects of formative feedback and the mediating role of self-efficacy. Research in Mathematics Education, 25(3), 277–300. https://doi.org/10.1080/14794802.2022.2062780;WGROUP:STRING:PUBLICATION

Soeharto, S., & Csapó, B. (2021). Evaluating item difficulty patterns for assessing student misconceptions in science across physics, chemistry, and biology concepts. Heliyon, 7(11), e08352. https://doi.org/10.1016/J.HELIYON.2021.E08352

Urban, M., Děchtěrenko, F., Lukavský, J., Hrabalová, V., Svacha, F., Brom, C., & Urban, K. (2024). ChatGPT improves creative problem-solving performance in university students: An experimental study. Computers & Education, 215, 105031. https://doi.org/10.1016/J.COMPEDU.2024.105031

Wiryana, R., & Alim, J. A. (2023). Permasalahan Pembelajaran Matematika di Sekolah Dasar. Jurnal Kiprah Pendidikan, 2(3), 271–277. https://doi.org/10.33578/KPD.V2I3.187

Zawacki-Richter, O., Bai, J. Y. H., Lee, K., Slagter van Tryon, P. J., & Prinsloo, P. (2024). New advances in artificial intelligence applications in higher education? International Journal of Educational Technology in Higher Education 2024 21:1, 21(1), 32-. https://doi.org/10.1186/S41239-024-00464-3

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education 2019 16:1, 16(1), 1–27. https://doi.org/10.1186/S41239-019-0171-0

Zimmerman, B. J. (2002). Becoming a Self-Regulated Learner: An Overview. Theory Into Practice, 41(2), 64–70. https://doi.org/10.1207/s15430421tip4102_2