Quality Analysis of K-Means Algorithm Grouping in Knime and Excel for PTMT Post Covid-19 Vaccination

  • Lili Kartikawati SMK Negeri 4 Yogyakarta, DIY,  Indonesia

Abstract

Face-to-face learning that involves interaction between friends and teachers is very difficult to replace with distance learning. Vaccination of educators and education staff is one of the country's priorities in accelerating face-to-face learning. Educators and education personnel in the Yogyakarta city education unit have implemented a complete COVID-19 vaccination in April 2021, so that SMK Negeri 4 Yogyakarta is required to provide limited face-to-face learning services (PTMT) and facilitate distance learning. Quality grouping is needed to limit the number of students who receive PTMT services. The process of grouping a set of data into clusters that have similarities is determined by calculating the distance. This study grouped students with the KNIME application and Microsoft Excel. Furthermore, the analysis of the calculation of the quality of the grouping of the two applications is carried out to get the best prototype. The manual calculation uses the Euclidean distance formula to calculate the distance between documents and the silhouette coefficient method to calculate the characteristic difference (distance difference) between clusters and the characteristic equation (closeness of distance) of the data in one cluster. The results of the K-Means algorithm clustering output from the KNIME application have a quality of 0.3208 (weak) while the excel manual has a quality of 0.6331 (medium), so the results of the excel manual are recommended to help the school curriculum classify PTMT.

Keywords: K-Means algorithm, vaccination COVID-19, PTM Limited, Knime

PDF Downloads

Download data is not yet available.
Published
2022-01-01
How to Cite:
Kartikawati, L. (2022). Quality Analysis of K-Means Algorithm Grouping in Knime and Excel for PTMT Post Covid-19 Vaccination. Ideguru: Jurnal Karya Ilmiah Guru, 7(1), 70-79. https://doi.org/10.51169/ideguru.v7i1.316
Section
Research Articles
Abstract viewed: 228 times
PDF (Bahasa Indonesia) downloaded: 276 times

References

Afni Syahpitri Damanik, N., Prodi Sistem Informasi, M., Royal, S., Sistem Informasi, P., & Manajemen Informasi, P. (2021). Penerapan metode clustering dengan algoritma k-means tindak kejahatan pencurian di kabupaten asahan. Journal of Computer (Online), 1(1), 7–14. https://jurnal.stmikroyal.ac.id/index.php/j-com/article/view/1065

Dewi, S., Defit, S., & Yunus, Y. (2020). Akurasi Pemetaan Kelompok Belajar Siswa Menuju Prestasi Menggunakan Metode K-Means (Studi Kasus SMP Pembangunan Laboratorium UNP). Jurnal Sistim Informasi Dan Teknologi. https://doi.org/10.37034/jsisfotek.v3i1.98

Hidayati, R., Zubair, A., Pratama, A. H., & Indana, L. (2021). Analisis Silhouette Coefficient pada 6 Perhitungan Jarak K-Means Clustering. Techno.Com, 20(2), 186–197. https://doi.org/10.33633/tc.v20i2.4556

Julianto, V., & Permadi, J. (2017). Aplikasi pemilihan strategi promosi penerimaan mahasiswa baru politeknik negara tanah laut menggunakan metode k-means clustering. Jurnal Ilmiah Informatika, 2(1), 99–104. https://doi.org/10.5281/JIMI.V1I2.37

Kementerian Pendidikan, Kebudayaan, R. dan T. (2020). Penyesuaian kebijakan pembelajaran di masa pandemi COVID-19.

Lesmana, S., Fauzia Akbari, A., Yulia Rahman, E., Gustian, D., Informasi Jl Raya Cibatu No, S., Kaler, C., Cisaat, K., Regency, S., & Barat, J. (2020). Penerapan k-means dalam efektivitas pembelajaran e-learning pada masa pandemi covid-19. Seminar Nasional Informatika, 2020 (1), 100–110. http://www.jurnal.upnyk.ac.id/index.php/semnasif/article/view/4090

Mardalius, M. (2018). Implementasi Algoritma K-Means Clustering Untuk Menentukan Kelas Kelompok Bimbingan Belajar Tambahan (Studi Kasus : Siswa SMA Negeri 1 Ranah Pesisir). https://doi.org/10.31219/osf.io/6mec3

R Sianipar, K. D., Wanti Siahaan, S., Siregar, M., Fikrul Ilmi Zer, P. R., Studi Teknik Informatika, P., Tunas Bangsa Pematangsiantar Jl Jend Sudirman Blok, S. A., Pematangsiantar, K., & Utara, S. (2020). Penerapan algoritma k-means dalam menentukan tingkat kepuasan pembelajaran online pada masa pandemi covid-19. Jurnal Teknologi Informasi, 4(1), 101–105. http://jurnal.una.ac.id/index.php/jurti/article/view/1258

Rousseuw, L. K. and P. J. (1990). Finding Groups in Data (J. W. & Sons (ed.)).

Sugiharti, E., & Muslim, A. (2016). On-line clustering of lecturers performance of computer science department of semarang state university using k-means algorithm. Journal of Theoretical and Applied Information Technology, 10(1). www.jatit.org