Kualitas Pengelompokkan Titik Kumpul Penjemputan Siswa Menuju Sekolah Menggunakan Algoritma K-Means Clustering

  • Lili Kartikawati SMK Negeri 2 Yogyakarta, Yogyakarta, Daerah Istimewa Yogyakarta,  Indonesia

Abstract

The need for intelligent school transportation is very urgent to think about together. Violations of traffic rules at SMK Negeri 4 Yogyakarta include violations of traffic rules committed by level X students, who are not yet eligible to use motorized vehicles according to Law No. 22 of 2009 article 81. DAPODIK data shows more than 50% of students use motorbikes to school from 1944 the number of students in the school. Solutions to revive public transportation facilities are urgently needed with methods that can provide effective and efficient value services. School buses as an alternative to public transportation solutions that require an optimization strategy for student gathering points (smart stops). Relevant research related to smart transportation and problem solving of school bus routes and determining their stops such as the title Optimization of Traveling Salesman Problems in School Transportation Using Genetic Algorithms (Assayyis et al., 2020) and research entitled Shareability Network Based Decomposition Approach for Solving Large-scale Multi -modal School Bus Routing Problems (Guo & Samaranayake, 2020) have utilized several PROBLEM SOLVING OPTIMIZATION (PSO) algorithms, this research will combine clustering and optimization to get the number of assembly points. Python language with the Anaconda platform as a clustering application and measuring the quality of the K-Means algorithm. Clustering quality measurement uses the DAVIES BOULDIN INDEX (DBI) method and the elbow method to obtain the number of pick-up points. Student gathering points based on the clustering method describe smart stops that have an effective and efficient impact on public transportation.

Keywords: Clustering K-Means, Davies Bouldin Index, Smart School Transport

PDF Downloads

Download data is not yet available.
Published
2023-06-05
How to Cite:
Kartikawati, L. (2023). Kualitas Pengelompokkan Titik Kumpul Penjemputan Siswa Menuju Sekolah Menggunakan Algoritma K-Means Clustering. Ideguru: Jurnal Karya Ilmiah Guru, 8(3), 501-508. https://doi.org/10.51169/ideguru.v8i3.611
Section
Research Articles
Abstract viewed: 82 times
PDF (Bahasa Indonesia) downloaded: 58 times

References

Afandi, A. M. (2020). The strategies to improve the sale of bicycles using k-means methods. International Conference on Social, Sciences and Information Technology, 1(1), 77–84. https://doi.org/10.33330/icossit.v1i1.764

Afni Syahpitri Damanik, N., Prodi Sistem Informasi, M., Royal, S., Sistem Informasi, P., & Manajemen Informasi, P. (2021). Penerapan metode clustering dengan algoritma k-means tindak kejahatan pencurian di kabupaten asahan. Journal of Computer)Online), 1(1), 7–14. https://jurnal.stmikroyal.ac.id/index.php/j-com/article/view/1065

Assayyis, M. I., Cholissodin, I., & Tibyani. (2020). Optimasi Travelling Salesman Problem Pada Angkutan Sekolah Menggunakan Algoritme Genetika ( Studi Kasus : Sekolah MI Salafiyah Kasim Blitar ). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 3(1), 454–461.

Calvete, H. I., Galé, C., Iranzo, J. A., & Toth, P. (2020). A partial allocation local search matheuristic for solving the school bus routing problem with bus stop selection. Mathematics, 8(8). https://doi.org/10.3390/MATH8081214

Deny Jollyta, M. S. , H. M. S. E. (2021). Teknik evaluasi cluster solusi menggunakan python dan rapidminer. In Google Books, CV Budi Utama: Vol. Februari. https://books.google.co.id/books?hl=id&lr=&id=3rcgEAAAQBAJ&oi=fnd&pg=PP1&dq=davies+bouldin+index+clustering+rapidminer&ots=lieSzhkf8H&sig=XwV9GFQ6H4HLgsZR2NVFcq024cY&redir_esc=y#v=onepage&q=davies bouldin index clustering rapidminer&f=false

Guo, X., & Samaranayake, S. (2020). Shareability Network Based Decomposition Approach for Solving Large-scale Multi-modal School Bus Routing Problems. http://arxiv.org/abs/2009.13468

Jumadi, B., Sitompul, D., Sitompul, O. S., & Sihombing, P. (2019). Enhancement clustering evaluation result of davies-bouldin index with determining initial centroid of k-means algorithm. 12015. https://doi.org/10.1088/1742-6596/1235/1/012015

Kartikawati, L., Kusrini, K., & Luthfi, E. T. (2022). Algoritma K-Means pada Pengelompokan Pembelajaran Tatap Muka Terbatas Sesudah Vaksinasi COVID-19. Jurnal Eksplora Informatika, 11(1), 20–28. https://doi.org/10.30864/eksplora.v11i1.560

Mardalius, M. (2018). Pemanfaatan rapid miner studio 8.2 untuk pengelompokkan data penjualan asesoris menggunakan algoritma k-means. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 4(2), 123–132. https://jurnal.stmikroyal.ac.id/index.php/jurteksi/article/view/36

Parvasi, S. P., Mahmoodjanloo, M., & Setak, M. (2017). A bi-level school bus routing problem with bus stops selection and possibility of demand outsourcing. Applied Soft Computing Journal, 61, 222–238. https://doi.org/10.1016/j.asoc.2017.08.018

Sani, A. (2018). Penerapan metode k-means clustering pada perusahaan. Jurnal Ilmiah Program Pascasarjana Magister Ilmu Komputer STMIK Nusa Mandiri, 1–7.

Shafahi, A., Wang, Z., & Haghani, A. (2017). Solving the school bus routing problem by maximizing trip compatibility. Transportation Research Record, 2667(1), 17–27. https://doi.org/10.3141/2667-03